Physics and the New Computation

Paul Vitdnyi*

CWI and University of Amsterdam

Abstract. New computation devices increasingly depend on particular
physical properties rather than on logical organization alone as used to
be the case in conventional technologies. This has impact on the synthe-
sis and analysis of algorithms and the computation models on which they
are to run. Therefore, scientists working in these areas will have to un-
derstand and apply physical law in their considerations. We discuss three
cases in some detail: interconnect length and communication in massive
multicomputers which depend on the geometry of space and speed of
light; energy dissipation and reversible (adiabatic) computation which
depend on thermodynamics; and quantum coherent parallel computing
which depends on quantum mechanics.

1 Introduction

In a sequential computation such as performed by a Turing machine or a von
Neumann architecture computer, one can safely ignore many physical aspects of
the underlying computer system and analyse the computational complexity of a
program in a purely logical fashion. In the realm of nonsequential computation
one cannot ignore the reality of the physical world we live in to such an extent.
The appropriateness of the analysis may stand or fall with the account taken of
physical reality. Moreover, nonclassical or nonstandard physical realizations of
computers may have totally unexpected properties.

A popular model to analyse parallel algorithms is the parallel random ac-
cess machine (PRAM) were many processors can read and write a single shared
memory in unit time per operation. Typically, for n inputs we have p(n) pro-
cessors and clever algorithms are designed which, say, add n numbers of n¢ bits
in O(logn) parallel time (the longest chain of operations executed by any single
processor in the lot). However, something is wrong here. Since p(n) processors
are necessary and sufficient for the algorithm, we cannot dispense with any one
of them, and hence the results of the calculations of each pair of processors
must interact somewhere. This means that we have to signal between each pair
of processors, and, taking the outermost ones, the distance between them is

* Partially supported by the European Union through NeuroCOLT ESPRIT Work-
ing Group Nr. 8556, and by NWO through NFI Project ALADDIN under Con-
tract number NF 62-376 and NSERC under International Scientific Exchange Award
ISE0125663. Address: CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.
Email: paulv@cwi.nl

107

2(p(n)'/?) because of the geometry of space. Hence the time required for in-
teraction is £2(p(n)'/?) by the bounded speed of light. That is, what we called
‘parallel time’ is in fact a series of ‘consecutive steps’ were the length of each step
depends on physical considerations. A similar problem of relation between the
theoretical model and physical realization occurs with NC networks (polynomial
number of processors and polylogarithmic depth).

In fact, optimality of PRAM algorithms may be misleading, because in any
physically realizable machine architecture it may be the case that a much simpler
and unsophisticated algorithm outperforms the optimal PRAM algorithm. Do
networks help with this problem? We can simulate PRAMs fast by networks
of processors communicating by message passing at the cost of a multiplicative
slowdown square logarithmic in the number of processors n for simulation on
a log n-dimensional hypercube, [Upfal and Wigderson, 1987]. This doesn’t solve
the problem mentioned above, since the hypercube nodes need to be order nl/3
apart for the majority of pairs (see below). Together it turns out that rather than
saving time, the simulation costs at least a logarithmic in n factor more time
than the original. Rolf Landauer, [Landauer, 1991] has emphasized “information
is physical”. So is communication.

At the outset of high density electronic chip technology (VLSI = Very Large
Scale Integration), a flurry of activity in analyzing computational complexity
focussed on the AT? measure, where A is the total (two dimensional) chip area
and T is the time (maximal number of transitions or steps of any component on
the chip). Typically, up to a polylogarithmic factor the results say AT? = 2(n?)
for many problems (for example input n bits and determine whether or not
they sum to n/2). It seems difficult to reach significantly higher lower bounds.
Superficially, it seems that this measure is nice since it gives a lower bound trade-
off for time versus area. However, it does not say much about physical chips. For
n input bits, assume that at the start of the computation we have them on
chip. Since each bit physically takes f2(1) area we have that A = £2(n) outright
(for example for the Kolmogorov random inputs which are the overwhelming
majority). That means that most input bits are 2(n!/2) distant from most other
input bits by the geometry of space argument. In any computation where none
of the input bits can be ignored, each pair of bits needs to interact somewhere,
and hence information must be exchanged across £2(n'/?) distance. This means,
by the bounded speed of light, that T = 2(n!/?). Together this trivially shows
AT? = (n?).

Even if we assume that A = n/f(n) (f(n) unbounded) then the chip can
contain at most n/f(n) input bits and the computation needs to proceed through
entering about n input bits. Since the circumference of the chip is 2(1/n/ f(n))
this takes at least £2(1/n - f(n)) time, resulting in AT? = 2(n?) again. If we
account for the bounded ‘pinability’, bounded number of pins through which
the input can be entered, we find AT? = 2(n3/f(n)). All these estimates are
gross underestimates because they ignore actual computing time on chip.

The AT? measure was widely studied [Thompson, 1979, Ullman, 1984] per-
haps due to the fact that the argument used is to bisect the postulated but

108

unknown embedded communication network (divide them into two parts whith
approximately equal number of nodes by a cut of the layout), and express
both A and T in terms of the unknown minimum bisection width of the net-
work (minimum number of edges and nodes on the cut). Fortuitiously, using
AT?, the unknown minimum bisection width gets divided out. According to
[Mead & Conway, 1980], a measure like AT has physical significance because it
is related to the maximal energy consumption and energy disipation of a chip. If
the gates constitute a constant fraction of A, and if all gates switch at each clock
cycle, conventional technologies dissipate 2(AT') energy in the form of heat. Be-
cause of overheating and meltdown this is a main factor which determines viabil-
ity. Related measures were defined and first investigated in [Kissin, 1982-1991].

Physics has a treasure trove of nonconventional technologies which may yield
computation opportunities. We cite three novel items. The first one is quantum
cryptography, [Bennett, et al., 1992]. Viewed first as science fiction, after a work-
ing prototype had been demonstrated this idea has now been taken on by com-
mercial developers. British Telecom recently announced a working setup using
optical fiber communication in excess of 10 kilometer. A second new develop-
ment is quantum coherent computation. Because new developments in quantum
coherent computation (if physically realizable) allow breaking most commonly
used cryptosystems, see Section 4, quantum cryptography may be the only safe
principle for public cryptography currently known, [Brassard, 1994]. In contrast
with other systems, whose safety rests (or rested) on unproven cryptographic as-
sumptions, the safety of quantum cryptography rests on the validity of quantum
mechanics.

A third new principle is computation using DNA. Recently a small instance of
the ‘Hamiltonian path problem’ was encoded in molecules of DNA and solved in-
side of a test tube using standard methods of molecular biology, [Adleman, 1994].
This has raised excitement about the following questions: Can practical molecu-
lar computers actually be built? Might they be as much as a billion times faster
that current super computers? According to [Adleman, 1994], “To some, a com-
puter is a physical device in the real world. But being a computer is something
that we externally impose on an object. There might be a lot of computers out
there, and I suspect there are”.

Acknowledgements Section 3 is based on joint work with Ming Li. Discus-
sions and help from André Berthiaume, Harry Buhrman, Tao Jiang, and John
Tromp are gratefully acknowledged.

2 Geometry of Space

Models of parallel computation that allow processors to randomly access a large
shared memory, such as PRAMs, or rapidly access a member of a large number
of other processors, will necessarily have large latency. If we use n processing
elements of, say, unit size each, then the tightest they can be packed is in a
3-dimensional sphere of volume n. Assuming that the units have no “funny”

109

shapes, e.g., are spherical themselves, no unit in the enveloping sphere can be
closer to all other units than a distance of radius R,

3.0\ 1/3
r= (%2))
Because of the bounded speed of light, it is impossible to transport signals over
n® (a > 0) distance in o(n) time. In fact, the assumption of the bounded speed
of light says that the lower time bound on any computation using n processing
elements is £2(n'/3) outright.

We study the following problem. Let G = (V, E) be a finite undirected graph,
without loops or multiple edges, embedded in 3-dimensional Euclidean space. Let
each embedded node have unit volume. For convenience of the argument, each
node is embedded as a sphere, and is represented by the single point in the
center. The distance between a pair of nodes is the Euclidean distance between
the points representing them. The length of the embedding of an edge between
two nodes is the distance between the nodes. How large does the average edge
length need to be?

We illustrate the approach with a popular architecture, say the binary d-cube.
Recall, that this is the network with n = 2¢ nodes, each of which is identified by
a d-bit name. There is a two-way communication link between two nodes if their
identifiers differ by a single bit. The network is represented by an undirected
graph C = (V, E), with V the set of nodes and E C V x V the set of edges, each
edge corresponding with a communication link. There are d2¢~! edges in C. Let
C be embedded in 3-dimensional Euclidean space, each node as a sphere with
unit volume. The distance between two nodes is the Euclidean distance between
their centers. Let £ be any node of C. There are at most 2¢/8 nodes within
Euclidean distance R/2 of z, with R as in Equation 1. Then, there are > 7- 24/8
nodes at Euclidean distance > R/2 from z. Construct a spanning tree T in C
of depth d with node z as the root. Since the binary d-cube has diameter d, such
a shallow tree exists. There are n nodes in T, and n — 1 paths from root z to
another node in T;. Let P be such a path, and let | P| be the number of edges in
P. Then |P| < d. Let length(P) denote the Euclidean length of the embedding
of P. Since 7/8th of all nodes are at Euclidean distance at least R/2 of root z,
the average of length(P) satisfies

TR

— —1 ———

(n-1) E length(P) > 16
PeT,

The average Euclidean length of an embedded edge in a path P is bounded below

as follows:
(-1 (|P|—1 Zlength(e)) > 1161—3. (2)

PeT, e€EP

This does not yet give a lower bound on the average Euclidean length of an
edge, the average taken over all edges in T,. To see this, note that if the edges
incident with z have Euclidean length 7R/16, then the average edge length in

110

each path from the root z to a node in T, is > 7R/16d, even if all edges not
incident with = have length 0. However, the average edge length in the tree is
dominated by the many short edges near the leaves, rather than the few long
edges near the root. In contrast, in the case of the binary d-cube, because of its
symmetry, if we squeeze a subset of nodes together to decrease local edge length,
then other nodes are pushed farther apart increasing edge length again. We can
make this intuition precise, [Vitanyi, 1986, Vitanyi, 1988].

Lemmal. The average Euclidean length of the edges in the 3-space embedding
of C is at least TR/(16d).

The symmetry property yielding such huge edge length is ‘edge-symmetry.’
To formulate the generalization of Lemma 1 for arbitrary graphs, we need
some mathematical machinery. Let G = (V, E) be a simple undirected graph,
and let I' be the automorphism group of G. Two edges e; = (uj,v;) and
es = (ug,ve) of G are similar if there is an automorphism v of G such that
v({u1,v1}) = {ua,v2}. We consider only connected graphs. The relation ‘similar’
is an equivalence relation, and partitions E into nonempty equivalence classes,
called orbits, E, ..., E,. We say that I" acts transitively on each E;, i =1,...m
A graph is edge- symmetnc if every pair of edges are similar (m = 1).

Additionally, we need the following notions. If z and y are nodes then d(z,y)
denotes the number of edges in a shortest path between them. Let D denote the
diameter of G defined by D is the maximum over all node pairs z,y of d(z,y).
For i = 1,...,m, define d;(z,y) as follows. For edges {z,y} € E, if {z,y} € E;
then d;(z, y) =1, else d;(z,y) = 0. Let II be the set of shortest paths between z
and y along edges in E. If z and y are not incident on the same edge ({z,y} ¢ E),

then di(z,y) = [II|™' Y. pey 2o p dile). Clearly,
di(@,y) + -+ dm(z,y) = d(z,y) £ D
Denote |V| by n. The ith orbit frequency is

T yGV

i =1,...,m. Finally, define the orbit skew coefficient of G as M = min{|E;|/|E| :
1 <7 < m}. Consider a d-dimensional Euclidean space embedding of G, with
embedded nodes, distance between nodes, and edge length as above. Let R be
the radius of a d-space sphere with volume n, corresponding to Equation 1 for
d = 3. We are now ready to state the main result.

Theorem 2. Let graph G be embedded in d-space with the parameters above,
and let C = (2¢ — 1)/2"‘“.

(i) Let s = |E| ™' 3, l(€) be the average length of the edges in orbit E;,
i=1,..,m. Then, Zl(t(ml 2 Y 1<icm 8ili > CRD™L.

(i) Let | = |E|™! }:eeEl(e) be the average length of an edge in E. Then,
l>CRMD™!.

111

For the proof we refer to [Vitanyi, 1988], where the theorem is applied to
binary d-Cube, Cube-Connected Cycles, edge-symmetric graphs (including com-
plete graph, star graph, §-dimensional meshes with wrap-around), and complete
binary tree. The lower bound is optimal in the sense of being within a constant
multiplicative factor of an upper bound for several example graphs of various
diameters, [Vitanyi, 1988]. An extension of the argument shows the same for
related networks like the Bruijn networks, shuffle-exchange graphs, and so on,
[Koppelman, 1995].

2.1 Irregular Networks

Since low-diameter symmetric network topologies lead to high average intercon-
nect length, it is natural to ask what happens with irregular topologies. In fact,
it is sometimes proposed that since symmetric networks of low diameter lead
to high interconnect length, one should use random networks where the pres-
ence or absence of a connection is determined by a coin flip. We report on some
work in [Vitanyi, 1994] that such networks will also have impossibly high average
interconnect length.

Kolmogorov complexity The Kolmogorov complexity, [Kolmogorov, 1965],
of z is the length of the shortest effective description of z. That is, the Kol-
mogorov complezity C(z) of a finite string z is simply the length of the shortest
program, say in FORTRAN? encoded in binary, which prints z without any
input. A similar definition holds conditionally, in the sense that C(z|y) is the
length of the shortest binary program which computes z given y as input. It
can be shown that the Kolmogorov complexity is absolute in the sense of being
independent of the programming language, up to a fixed additional constant
term which depends on the programming language but not on z. We now fix
one canonical programming language once and for all as reference programming
language, and thereby we fix C() uniquely.

For the theory and applications, see [Li & Vitdnyi, 1993]. Let z,y,z € N,
where N denotes the natural numbers and we identify A" and {0,1}* according
to the correspondence (0, €), (1,0), (2, 1), (3,00), (4,01), Hence, the length |z|
of z is the number of bits in the binary string z. Let T1,T5,... be a standard
enumeration of all Turing machines. Let (-,-) be a standard invertible effective
bijection from N x A to N. This can iterated to ({-,-),").

Definition 3. Let U be an appropriate universal Turing machine such that

U({{i,p),y)) = Ti({p,y)) for all i and (p,y). The Kolmogorov complezity of =
given y (for free) is

C(azly) = min{|p| : U((p,y)) = z,p € {0,1}",i € N}

2 Or in Turing machine codes.

112

One way to express irregularity or randomness of an individual network
topology is by a modern notion of randomness like Kolmogorov complexity.
A simple counting argument shows that for each y in the condition and each
length n there exists at least one z of length n which is incompressible in the
sense of C(z|y) > n, 50% of all z’s of length n is incompressible but for 1 bit
(C(z|y) > n—1), 75% of all z’s is incompressible but for 2 bits (C(z|y) > n—2)
and in general a fraction of 1 — 27¢ of all strings cannot be compressed by more
than c bits. (This is because there are 2™ strings of length n and only 2"7¢ — 1
binary programs of length at most n — ¢, [Li & Vitdnyi, 1993]. A more sophisti-
cated argument shows that there are a large number of strings of length n with
complexity at least n.)

Random Graphs Each graph G = (V,E) onnnodes V = {0,...,n—1} can be
coded (up to isomorphism) by a binary string of length n(n—1)/2. We enumerate
the n(n — 1)/2 possible edges in a graph on n nodes in standard order and set
the ith bit in the string to 1 if the edge is present and to 0 otherwise. Conversely,
each binary string of length n(n — 1)/2 encodes a graph on n nodes. Hence we
can identify each such graph with its corresponding binary string.

We shall call a graph G on n nodes random if it satisfies

C(G|n) > n(n—1)/2 - cn, (3)

where ¢ is an appropriate constant (¢ = 0.09 suffices for n large enough). Ele-
mentary counting shows that a fraction of at least

1-1/2"
of all graphs on n nodes has that high complexity.

Lemmad. The degree d of each node of a random graph satisfies |d—(n—1)/2| <
n/4.3

Proof. Assume that the deviation of the degree d of a node v in G from (n—1)/2
is at least k. From the lower bound on C(G|n) corresponding to the assumption
that G is random, we can estimate an upper bound on k, as follows.

Describe G given n as follows. We can indicate which edges are incident on
node v by giving the index of the connection pattern in the ensemble of

m= ¥ (g)smerve (@
|[d~(n~1)/2|>k

% One can replace cn in Equation 3 by o(n). Then in Lemma 4 we can replace n/4 by
o(n). The random graphs under this definition contain only nodes with vertex degree
about n/2. With n/logn substituted for o(n), they comstitute a slightly smaller
fraction 1 — 1/2™/1°6™ of all graphs on n nodes, but still a fraction which goes to
1 fast with n. With Harry Buhrman we have proved in a forthcoming paper that
there are 2" /d graphs G satisfying C(G|n) > n(n ~ 1)/2, where d is a constant. For
such complex G we have |d — (n — 1)/2| = O(y/n). The fraction of such G among all
graphs on n nodes is at least 1/d.

113

possibilities. The last inequality follows from a general estimate of the tail prob-
ability of the binomial distribution, Chernoff’s bounds, [Li & Vitanyi, 1993}, pp.
127-130. To describe G it then suffices to modify the old code of G by prefixing
it with

— the identity of the node concerned in [logn] bits,

— the value of d in [logn] bits, possibly adding nonsignificant 0’s to pad up to
this amount,

— the index of the interconnection pattern in logm + 2loglogm bits in self-
delimiting form (this form requirement allows the concatenated binary sub-
descriptions to be parsed and unpacked into the individual items: it encodes
a separation delimiter in < 2loglogm bits, [Li & Vitanyi, 1993]),

followed by the old code for G with the bits in the code denoting the presence
or absence of the possible edges which are incident on the node v deleted.

Clearly, given n we can reconstruct the graph G from the new description.
The total description we have achieved is an effective program of

logm + 2loglogm + O(logn) + n(n — 1)/2 — (n — 1)

bits. This must be at least the length of the shortest effective binary program,
which is C(G|n) satisfying Equation 3. Therefore,

logm + 2loglogm > n — 1 — O(logn) — cn.
Since we have estimated in Equation 4 that
logm < n —(k?/(n —1))loge,

it follows that, with ¢ = 0.09,
k<n/4.

The lemma shows that each node is connected by an edge with about 25%
of all nodes in G. Hence G contains a subgraph on about 25 % of its nodes of
diameter 1. This is all we need. *

Theorem 5. A fraction of at least 1 — 1/2°™ (c = 0.09) of all graphs on n
nodes (the incompressible, random, graphs) have total interconnect length of
2(n7/3) in each 3-dimensional Euclidean space embedding (or 2(n%/?) in each
2-dimensional Euclidean space embedding).

Proof. By lemma 4 we know that in a random graph G each node z is at distance
1 of (n—1)/2+n/4 other nodes y, and 7/8th of these nodes y (in 3 dimensions)
is at distance 2(n!/3) of z by Equation 1. The argument for 2 dimensions is
analogous. By Lemma 4 we know that a random graph G on n nodes has 2(n?)
edges since each node has at least n/4 incident edges.

4 Using another standard incompressibility argument, as suggested by Harry Buhrman,
one can show that all graphs which are random in the sense above have diameter
precisely 2.

114

Since both the very regular symmetric low diameter graphs and the random
graphs have high average interconnect length which sharply rises with n, the only
graphs which will scale feasibly up are symmetric fairly high diameter topologies
like the mesh—which therefore will most likely be the interconnection pattern
of the future massive multiprocessor systems.

2.2 Interpretation of the Results

An effect that becomes increasingly important at the present time is that most
space in the device executing the computation is taken up by the wires. Under
very conservative estimates that the unit length of a wire has a volume which
is a constant fraction of that of a component it connects, we have shown in
[Vitdnyi, 1988] that in 3-dimensional layouts for binary d-cubes, the volume of
the n = 2¢ components (nodes) performing the actual computation operations
is an asymptotic fastly vanishing fraction of the volume of the wires needed for
communication:

ti omponents
volume computing comp _ o(n“l /3)

volume communication wires

If we charge a constant fraction of the unit volume for a unit wire length,
and add the volume of the wires to the volume of the nodes, then the volume
necessary to embed the binary d-cube is £2(n/3). However, this lower bound
ignores the fact that the added volume of the wires pushes the nodes further
apart, thus necessitating longer wires again. How far does this go? A rigorous
analysis is complicated, and not important here. The following intuitive argu-
ment indicates what we can expect well enough. Denote the volume taken by the
nodes as V,,, and the volume taken by the wires as V,,. The total volume taken
by the embedding of the cube is V; = V,, + V},. The total wire length required to
lay out a binary d-cube as a function of the volume taken by the embedding is,
substituting radius R obtained from V; = 4w R3/3 in the formula for the total
wire length obtained in [Vitdnyi, 1988],

n [3V,\ /3
> (2
L(Vt)“32<41r)

Since limy— 00 Va/Viy — 0, assuming unit wire length of unit volume, we set the
total interconnect length L(V;) at L(V;) = V;. This results in a better estimate
of 2(n%/?) for the volume needed to embed the binary d-cube. When we want
to investigate an upper bound to embed the binary d-cube under the current
assumption, we have a problem with the unbounded degree of unit volume nodes.
There is no room for the wires to come together at a node. For comparison,
therefore, consider the fixed degree version of the binary d-cube, the CCC (see
above), with n = d2¢ trivalent nodes and 3n/2 edges. The same argument yields
2(n3/210g73/2) for the volume required to embed CCC with unit volume per
unit length wire. It is known, that every small degree n-vertex graph, e.g., CCC,
can be laid out in a 3-dimensional grid with volume O(n3/2) using a unit volume

115

per unit wire length assumption, [Mead & Conway, 1980, Ullman, 1984]. This
neatly matches the lower bound.

Just like for the complete graph, the situation for the random graph which we
consider here, is far worse. For a random graph we have, under the assumption
that the wires have unit volume per unit length, that the total wire length in 3
dimensional embeddings is £2(n"/3) by Theorem 5, and that

volume communication wires

— Q(n4/3)

volume computing components

The proof of Theorem 5 actually shows that the total interconnect length of an
embedded random graph is L(V;) = .Q(nthl/ 3), where the radius of an as tight
as possibly packed 3-dimensional sphere of the total volume V; of nodes and wires
together is .Q(Vt]’/ 3). Counsidering that the larger volume will cause the average
interconnect length to increase, as above for the binary d-cube, setting the total
interconnect length L(V;) = V; since the volume of the computing nodes add
a negligible term, we find for a random graph that on n nodes that the total
volume satisfies

Vi = 2(n?).

Here we have not yet taken into account that longer wires need larger drivers
and have a larger diameter, that the larger volume will again cause the average
interconnect length to increase, and so on, which explosion may make embedding
altogether impossible with finite length interconnects as exhibited in related
contexts in [Vitdnyi, 1985].

3 Adiabatic Computation and Thermodynamics

All computations can be performed logically reversibly, [Bennett, 1973], at the
cost of eventually filling up the memory with unwanted garbage information.
This means that reversible computers with bounded memories require in the long
run irreversible bit operations, for example, to erase records irreversibly to create
free memory space. The minimal possible number of irreversibly erased bits to do
so is believed to determine the ultimate limit of heat dissipation of the compu-
tation by Landauer’s principle, [Landauer, 1961, Bennett, 1973, Bennett, 1982,
Proc. PhysComp, 1981, 1992, 1994]. In reference [Bennett et al., 1993] we and
others developed a mathematical theory for the unavoidable number of irre-
versible bit operations in an otherwise reversible computation.

Methods to implement (almost) reversible and_dissipationless computation
using conventional technologies appear in [Proc. PhysComp, 1981, 1992, 1994],
often designated by the catch phrase ‘adiabatic switching’. Many currently pro-
posed physical schemes implementing adiabatic computation reduce irreversibil-
ity by using longer switching times. This is done typically by switching over equal
voltage gates after voltage has been equalized slowly. This type of switching does
not dissipate energy, [Proc. PhysComp, 1981, 1992, 1994], the only energy dis-
sipation is incurred by pulling voltage up and down: the slower it goes the less

116

energy is dissipated. If the computation goes infinitely slow, zero energy is dis-
sipated. Clearly, this counteracts the purpose of low energy dissipation which is
faster computation.

In [Li & Vitdnyi, 1994] it is demonstrated that even if adiabatic computation
technology advances to switching with no time loss, a similar phenomenon arises
when we try to approach the ultimate limits of minimal irreversibility of an oth-
erwise reversible computation, and hence minimal energy dissipation. This time
the effect is due to the logical method of reducing the number of irreversible bit
erasures in the computation irrespective of individual switching times. By com-
puting longer and longer (in the sense of using more computation steps), the
amount of dissipated energy gets closer to ultimate limits. Moreover, one can
trade-off time (number of steps) for energy: there is a new time-irreversibility
(time-energy) trade-off hierarchy. The bounds we derive are also relevant for
quantum computations which are reversible except for the irreversible observa-
tion steps, [Deutsch, 1985-1992, Benioff, 1980-1986, Benioff, 1995].

3.1 Background

The ultimate limits of miniaturization of computing devices, and therefore the
speed of computation, are governed by unavoidable heating up attending rising
energy dissipation caused by increasing density of switching elements in the
device. On a basically two dimensional device, linear speed up by shortening
interconnects is essentially attended by squaring the dissipated energy per area
unit per second because we square the number of switching elements per area
unit, [Mead & Conway, 1980].

Therefore, the question of how to reduce the energy dissipation of computa-
tion determines future advances in computing power. Around 1940 a comput-
ing device dissipated about 10~2? Joule per bit operation at room temperature.
Since that time the dissipated energy per bit operation has roughly decreased
by one order of magnitude (tenfold) every five years. Currently, a bit opera-
tion dissipates® about 10~17 Joule. Extrapolations of current trends show that
the energy dissipation per binary logic operation needs to be reduced below kT
(thermal noise) within 20 years. Here k is Boltzmann’s constant and T the ab-
solute temperature in degrees Kelvin, so that kT ~ 3 x 1072! Joule at room
temperature. Even at kT level, a future laptop containing 10'® gates in a cu-
bic centimeter operating at a gigahertz dissipates 3 million watts/second. For
thermodynamic reasons, cooling the operating temperature of such a computing
device to almost absolute zero (to get kT down) must dissipate at least as much
energy in the cooling as it saves for the computing.

Considerations of thermodynamics of computing started in the early fifties.
J. von Neumann [Burks, 1966] reputedly thought that a computer operating at
temperature T' must dissipate at least k7 In 2 Joule per elementary bit operation
(about 3 x 1072! J at room temperature).

5 After R.W. Keyes, IBM Research.

117

Around 1960, R. Landauer [Landauer, 1961] more thoroughly analyzed this
question and concluded that it is only ‘logically irreversible’ operations that
dissipate energy. An operation is logically reversible if its inputs can always be
deduced from the outputs. Erasure of information in a way such that it cannot be
retrieved is not reversible. Erasing each bit costs kT In 2 energy, when computer
operates at temperature 7T'.

One should sharply distinguish between the issue of logical reversibility and
the issue of energy dissipation freeness. The fact that some computers operates in
a logically reversible manner says nothing about whether they dissipate heat. It
only saysis that the laws of physics do not preclude that one can invent a technol-
ogy in which to implement a logically similar computer to operate physically in a
dissipationless manner. Computers built from reversible circuits, or the reversible
Turing machine, [Bennett, 1973, Bennett, 1982, Fredkin & Toffoli, 1982], imple-
mented with current technology will presumably dissipate energy but may con-
ceivably be implemented by future technology in an adiabatic fashion. For non-
reversible computers adiabatic implementation is widely considered impossible.

Thought experiments can exhibit a computer that is both logically and phys-
ically perfectly reversible and hence perfectly dissipationless. An example is the
billiard ball computer, [Fredkin & Toffoli, 1982], and similarly the possibility of a
coherent quantum computer, [Feynman, 1982—1987, Deutsch, 1985-1992]. Our
purpose is to determine the theoretical ultimate limits to which the irreversible
actions in an otherwise reversible computation can be reduced.

3.2 Irreversibility Cost of Computation

The ultimate limits of energy dissipation by computation will be expressed in
number of irreversibly erased bits. Hence we consider compactification of records.
In analogy of garbage collection by a garbage truck, the cost is less if we compact
the garbage before we throw it away. The ultimate compactification which can
be effectively exploited is expressed in terms of Kolmogorov complexity.

Let R = Ry, Ry, ... be a standard enumeration of reversible Turing machines,
[Bennett, 1973]. We define E(-,) as in [Bennett et al., 1993] (where it is denoted
as E3('a))-

Definition 6. The irreversibility cost Eg(z,y) of computing y from z by a re-
versible Turing machine R is is

Eg(z,y) = min{|p| + |¢| : R({z,p)) = (,9)}-

We denote the class of all such cost functions by £.

We call an element Eg of £ a universal irreversibility cost function,if Q € R,
and for all Rin R

EQ(:L‘) y) < ER(xay) +Cr,

for all z and y, where cg is a constant which depends on R but not on z or y.
Standard arguments from the theory of Turing machines show the follow’ng.

118

Lemma7. There is a universal irreversibility cost function in £. Denote it by
Eyr.

Proof. In [Bennett, 1973] a universal reversible Turing machine U R is constructed
which satisfies the optimality requirement.

Two such universal (or optimal) machines UR and UR' will assign the same
irreversibility cost to a computation apart from an additive constant term c
which is independent of = and y (but does depend on UR and UR'). We select
a reference universal function UR and define the irreversibility cost E(z,y) of
computing y from x as

E(Z,y) = EUR($7y)'
Because of the expression for E(z,y) in Theorem 8 below it is called the sum
cost measure in [Bennett et al., 1993].

In physical terms this cost is in units of kT'In2, where k is Boltzmann’s
constant, T is the absolute temperature in degrees Kelvin, and In is the natural
logarithm.

Because the computation is reversible, this definition is symmetric: we have
E(z,y) = E(y,).

In our definitions we have pushed all bits to be irreversibly provided to the
start of the computation and all bits to be erased to the end of the computation.
It is easy to see that this is no restriction. If we have a computation where irre-
versible acts happen throughout the computation, then we can always mark the
bits to be erased, waiting with actual erasure until the end of the computation.
Similarly, the bits to be provided can be provided (marked) at the start of the
computation while the actual reading of them (simultaneously unmarking them)
takes place throughout the computation).

Now let us consider a general computation which outputs string y from
input string z. We want to know the minimum irreversibility cost for such
computation. This leads to the following theorem, for two different proofs see
[Bennett et al., 1993, Li & Vitanyi, 1994].

Theorem 8 Fundamental theorem. Up to an additive logarithmic term
E(z,y) = C(z|y) + C(y|=).

Erasing a record z is actually a computation from z to the empty string .
Hence its irreversibility cost is E(z,€).

Corollary 9. Up to a logarithmic additive term, the irreversibility cost of era-
sure is E(z,€) = C(z).

3.3 Trading Time for Energy

Because now the time bounds are important we consider the universal Turing
machine U to be the machine with two work tapes which can simulate t steps of a
multitape Turing machine T in O(tlogt) steps (the Hennie-Stearns simulation).
If some multitape Turing machine T computes z in time ¢t from a program p,
then U computes ¢ in time O(tlogt) from p plus a description of T.

119

Definition 10. Let C¥(z|y) be the minimal length of binary program (not nec-
essarily reversibly) for the two work tape universal Turing machine U computing
x given y (for free) in time t. Formally,

Cl(zly) = Ix’réb\r}{lpl :U((p,y)) = z in < t(|z|) steps}.

C*(zly) is called the t-time-limited conditional Kolmogorov complezity of x given
y. The unconditional version is defined as Ct(z) := C*(z,€). A program p such
that U(p) = in < t(|z|) steps and |p| = C*(z) is denoted as z}.

Note that with C%(z|y) the conditional t-time-limited Kolmogorov complex-
ity with respect to Turing machine T', for all z,y, C* (z|y) < CL(z|y)+cr, where
t' = O(tlogt) and cr is a constant depending on T but not on z and y.

This C*(-) is the standard definition of time-limited Kolmogorov complexity,
[Li & Vitanyi, 1993]. However, in the remainder of the paper we always need to
use reversible computations. Fortunately, in [Bennett, 1989] it is shown that for
any € > 0, ordinary multitape Turing machines using T" time and S space can
be simulated by reversible ones using time O(T") and space O(ST*).

To do effective erasure of compacted information, we must at the start of
the computation provide a time bound t. Typically, t is a recursive function and
the complexity of its description is small, say O(1). However, in Theorem 11 we
allow for very large running times in order to obtain smaller C*(-) values.

Theorem 11 Irreversibility cost of effective erasure. If t(|z|) > |z| is a
time bound which is provided at the start of the computation, then erasing an n
bit record = by an otherwise reversible computation can be done in time (number
of steps) O(21%lt(|z])) at irreversibility cost (hence also thermodynamic cost)
C*(z) + 2C*(t|z) + 41og C(t|z) bits. (Typically we consider t as some standard
ezplicit time bound and the last two terms adding up to O(1).)

Proof. Initially we have in memory input z and a program p of length C*(t,)
to compute reversibly ¢ from z. To separate binary = and binary p we need to
encode a delimiter in at most 2log C*(t|z) bits.

1. Use = and p to reversibly compute ¢t. Copy t and reverse the computation.
Now we have z, p and ¢.

2. Use t to reversibly dovetail the running of all programs of length less than
z to find the shortest one halting in time ¢ with output z. This is z}. The
computation has produced garbage bits g(z, ;). Copy z}, and reverse the
computation to obtain z erasing all garbage bits g(z,z;). Now we have
z,p,x;,t in memory.

3. Reversibly compute t from z by p, cancel one copy of ¢, and reverse the
computation. Now we have z, p,z} in memory.

4. Reversibly cancel z using z} by the standard method, and then erase z} and
p irreversibly.

Corollary 12. E(z,€) > limi,o C*(z) = C(z), and by Theorem 8 up to an
additional logarithmic term, E(z,€) = C(z).

120

Essentially, by spending more time we can reduce the thermodynamic cost
of erasure of z} to its absolute minimum. In the limit we spend the optimal
value C(z) by erasing z*, since lim; .o 2} = z*. This suggests the existence
of a trade-off hierarchy between time and energy. The longer one reversibly
computes to perform final irreversible erasures, the less bits are erased and energy
is dissipated. This intuitive assertion will be formally stated and rigourously
proved below.

Definition 13. Let UR be the reversible version of the two worktape universal
Turing machine, simulating the latter in linear time by Bennett’s result men-
tioned above. Let Et(z,y) be the minimum irreversibility cost of an otherwise
reversible computation from z to y in time t. Formally,
E'(z,y) = miz {|p| +lg| : UR((z,p)) = (4, q) in < #(|z]) steps}.

Because of the similarity with Corollary 12 (E(z,€) is about C(z)) one is
erroneously led to believe that E(z,e) = C*(z) up to a log additive term.
However, the time-bounds introduce many differences. To reversibly compute
z} we may require (because of the halting problem) at least O(2!=!¢(|z|)) steps
after having decoded t, as indeed is the case in the proof of Theorem 11. In
contrast, E*(z,¢€) is about the number of bits erased in an otherwise reversible
computation which uses at most ¢ steps. Therefore, as far as we know possibly
C*(z) > E¥(z,¢) implies t' = 2(2/*!t(|2])). More concretely, it is easy to see
that for each z and t(|z|) > |z|,

E'(z,€) 2 C*(z) 2 E' (3,9)/2, ®)
with ¢'(|z|) = O(t(|z]). Theorem 11 can be restated in terms of E*(-) as
E (z,€) < CYz) + 2C*(t|z) + 41log C'(t|z),

with #'(|z|) = O(2/*!¢(|z|)). Comparing this to the righthand inequality of Equa-
tion 5 we have improved the upper bound on erasure cost at the expense of
increasing erasure time. However, these bounds only suggest but do not actually
prove that we can exchange irreversibility for time. The following result definitely
establishes the existence of a trade-off, [Li & Vitdnyi, 1994].

Theorem 14 Irreversibility-time trade-off hierarchy. For each large enough
n there is a string x of length n and a sequence of m = %\/ﬁ time functions
t1(n) < t2(n) <... < tm(n), such that

EY(z,€) > E®(z,€) > ... > E'™(z,¢).

In the cost measures like E*(-,-) we have counted both the irreversibly pro-
vided and the irreversibly erased bits. But Landauer’s principle only charges
energy dissipation costs for irreversibly erased bits. It is conceivable that the
above results would not hold if one considers as the cost of erasure of a record
only the irreversibly erased bits. However, we have show that Theorem 14 also
holds for Landauer’s dissipation measure, [Li & Vitdnyi, 1994], in exactly the
same form and by almost the same proof.

121

4 Quantum Coherent Parallel Computation

Classical methods of parallel computation are plagued by wiring problems (Sec-
tion 2) and heat dissipation problems (Section 3). To counteract such problems
attending further miniaturization of parallel computing devices current research
considers quantum mechanics based technologies. Classical use of such technolo-
gies deals with reducing feature width on chip to below the nanometer level,
[Kiehl, 1994], or interacting quantum dots subnanotechnology layouts for cellu-
lar automata, [Lent et al., 1994].

This section deals with the prospect of a very nonclassical emergent possible
computer technology (quantum coherent computing or QCC) which has recently
acquired great anticipated economic value. This happened by one of the most for-
tuitious demonstrations in computing that QCC can break the universally used
public key cryptosystems by being able to factor and do the discrete logarithm
in polynomial time, [Shor, 1994] with preliminary work in [Deutsch, 1985-1992,
Bernstein and Vazirani, 1993, Simon, 1994]. This result opened the vista of a
veritable breakthrough in computing. There are apparently formidable obstacles
to surmount before a workable technology can be obtained, [Unruh, 1995].

The QCC approach as first advocated in [Benioff, 1980-1986] is currently
aimed to exploit the accepted theory that quantum evolution of an appropriate
system consists in a superposition of many (potentially infinitely many) simul-
taneous computation paths. It is theoretically possible that through the specific
quantum mechanical rules of interference of the different paths one can boost the
probability associated with desirable evolutions and suppress undesirable ones
for certain algorithms. Upon observation of the system state one of the states
in superposition is realized. By quantum specific algorithmic techniques the de-
sired outcome can theoretically by observed with arbitrary high probability, or
the desired outcome can be computed from the observed data with arbitrary
high probability.

The QCC approach will partially alleviate the wiring problem (Section 2)
because an exploding number of different computation paths will be simulta-
neously followed (with appropriate probability amplitudes, to be sure) by the
same single physical apparatus requiring but a tiny amount of physical space.
This is the substance of R. Feynman’s dictum “there is room at the bottom” in
the context of his proposal of QCC, [Feynman, 1982—1987]. Of course, since the
different computation paths of a quantum computation cannot communicate as
is often a main feature in a parallel distributed computation, it is only a very spe-
cial type of room which is available at the bottom. Moreover, since the quantum
evolution in a computation if unobstructed by observation and decoherence is
reversible, the pure form of QCC, apart from the irreversible observation phase,
is energy dissipation free. QCC seems to a very large extent to achieve the opti-
mal adiabatic computation aimed for in Section 3. Although there seems to be
agreement that energy gets dissipated in the irreversible observation phase, to
the author’s knowledge it is not yet clear how much. This seems to require a
quantum Kolmogorov complexity based on ‘qubits’ (quantum bits) as defined
in context of quantum information theory by [Schuhmacher, 1994], analogous to

122

the classical bits of information theory of [Shannon, 1948]. Through a sequence
of proposals [Benioff, 1980-1986], [Feynman, 1982—1987], [Deutsch, 1985-1992],
there has emerged a Turing machine model of quantum coherent computing.

4.1 Background: Probabilistic Turing Machines

The simplest way to describe it seems by way of probabilistic machines. Sup-
pose we consider the well known probabilistic Turing machine which is just like
an ordinary Turing machine, except that at each step the machine can make a
probabilistic move which consists in flipping a (say fair) coin and depending on
the outcome changing its state to either one of two alternatives. This means that
at each such probabilistic move the computation of the machine splits into two
distinct further computations each with probability 1/2. Ignoring the determin-
istic computation steps, a computation involving m coinflips can be viewed as
a binary computation tree of depth m with 2™ leaves, where each node at level
t < m corresponds to a state of the system which after ¢ coinflips occurs with
probability 1/2. For convenience, we can label the edges connecting a state z
directly with a state y with the probability that a state z changes into state y
in a single coin flip (in this example all edges are labeled ‘1/2’).

As an example, given an arbitrary Boolean formula containing n variables, a
probabilistic machine can flip its coin n times to check each of the 2™ possible
truth assignments to determine wether there exists an assignment to the variables
which makes the formula true. If there are m distinct such assignments then the
probabilistic machine finds that the formula is satisfyable with probability at
least m/2™—since there are m distinct computation paths leading to a satisfyable
assignment.

Now suppose the probabilistic machine is hidden in a black box and the
computation proceeds without us knowing the outcomes of the coin flips. Sup-
pose that after ¢ coin flips in the computation we open part of the black box
and observe the bit at the position of the Turing machine tape which denotes
the truth assignment for variable zs (5 < t) which already received its truth
assignment. Before we opened the black box all 2? initial truth assignments to
variables 1,...,2; were equally possible, each had probability 1/2%. After we
observed the state of variable x5, say 0, the probability space of possibilities has
collapsed to the truth assignments which consist of all binary vectors with a 0
in the 5th position each of which has probability renormalized at 1/2!1.

4.2 Quantum Turing Machines

A quantum Turing machine is related to the probabilistic Turing machine. Con-
sider the same computation tree. However, instead of a probability p; > 0 asso-
“ciated with each node i, such that)" p; = 1, the summation taking place over
the states a computa.tlon can possible be in at a particular time instant, there
is an amplitude ; associated with each state |i) of an observable of the system
(the notation |-) has good reasons in quantum mechanics notation related to the
particular matrix mathematics involved). The amplitudes are complex numbers

123

satisfying 3" ||cs]|® = 1, where if o; = a + by/=1 then llasl] = Va? + b% and
the summation is taken over all distinct states of the observable at a particular
instant. The transitions are governed by a matrix U which represents the pro-
gram executed. This program has to satisfy the following constraints. If the set
of possible ID’s (complete instantaneous description) of the Turing machine is
X, where X is say {0,1}" to simplify the discussion, then U maps the column
vector ¢ = (az)zex to Ua. Here o is a vector of amplitudes of the quantum
superposition of the distinct possible states in X before a step, and Ug the same
after the step concerned. The special property which U needs to satisfy in quan-
tum mechanics is that it is unitary, that is, U x U' = I where I is the identity
matrix and U' is the conjugate transpose of U (‘conjugate’ means that all /—1’s
are replaced by —/—1’s and ‘transpose’ means that the rows and columns are
interchanged). In other words, U is unitary iff Ut = UL,

The unitary constraint on the evolution of the computation enforces two
facts.

1. fU =qand U* =U-U ' then), .« ||(U‘g):,;||2 = 1 for all ¢ (discretiz-
ing time for convenience).
2. A quantum computation is reversible (replacing U by Ut = U~1).

The common example here is a simple computation on a one-bit computer. The
quantum superposition of states of the computer is denoted by

@) = e [0)+ 8 [1),

where ||a]|® +||8]|* = 1. The different possible states are |0) = (3) and |1) =
((1)) Our unitary operator will be

v=2 (1)

2 \—-11
It is easy to verify using common matrix calculation that

U [0) = V2/2 |0) = v2/2 |1)
U 1) =v2/2 |0) +v2/2 |1)
U?10)=010) -1 |1) = — |1)
U?]1)=110)+0 |1) = |0)

If we observe the computer in state U |0), then the probability of observing state
|0} is (v/2/2)® = 1/2 and the probability to observe |1) is (—v/2/2)% = 1/2.
However, if we observe the computer in state U2 |0), then the probability of
observing state |0) is 0 and the probability to observe |1) is 1. Similarly, if we
observe the computer in state U |1), then the probability of observing state |0)
is (v/2/2)? = 1/2 and the probability to observe |1) is (+/2/2)% = 1/2. But now,
if we observe the computer in state U2 [1), then the probability of observing
state |0) is 1 and the probability to observe |1) is 0. Therefore, the operator

124

U inverts a bit when it is applied twice in a row, and hence has acquired the
charming name square root of ‘not’. It is a simple exercise to write U in terms
of an if-then—else program:

if (W) = |0) then |¥):=+v2/2 |0) —V2/2 |1)
else |7) :=/2/2 |0) +2/2 |1)

Without mentioning it, and perhaps without the reader even noticing, we have
applied as a matter of course an absolutely crucial difference between quantum
computation and probabilistic computation.

4.3 Observables

According to quantum mechanics a physical system gives rise to a complex linear
vector space H, such that each vector of unit length represents a state of the
system |¥) € M. R

A quantum measurement gives rise to a Hermitian operator A (the observable)
and a decomposition of H into orthogonal subspaces (different states of the

observable)
H=A10A® - @ A,,

with A = Yo, a;P; where P; is the projector of state |¥) on A; (say, |a:)).
If we measure observable A in system state |&), with |¥) = Y-, ¢; |a;), then
the following happens with probability Hckllz:

1. The outcome of the measurement « is registered.
2. The superposition [¥) collapses to superposition |a;) € Ag.
3. The probability of observing [aj) is renormalized to 1.

4.4 Interference

In computing the above amplitudes, subsequent to two applications of U, ac-
cording to matrix calculus we found that

U 1) = v2/2 (v2/2(10) — 1) +v2/2(|0) + |1)))
=3(10)= 1)+ [0} + [1)) = |0).

In a probabilistic calculation, flipping a coin two times in a row, we would have
found that the probability of each computation path in the complete binary
computation tree of depth 2 was 1/4, and the states at the four leaves of the
tree were |0), 1), |0), |1), resulting in a total probability of observing |0) being -
1/2 and the total probability of observing |1) being 1/2 as well.

The principle involved is called interference, like with light. If we put a screen
with a single small enough hole in between a light source and a target, then we
observe a gradually dimming illumination of the target screen, the brightest
spot being colinear with the light source and the hole. If we put a screen with

125

two small holes in between, then we observe a diffraction pattern of bright and
dark stripes due to interference. Namely, the light hits all of the screen via two
different routes (through the two different holes). If the two routes differ by an
even number of half wave lengths, then the wave amplitudes at the target are
added, resulting in twice the amplitude and a bright spot, and if they differ by an
odd number of half wave lengths then the wave amplitudes are in opposite phase
and are subtracted resulting in zero and a dark spot. Similarly, with quantum
computation, if the quantum state is

|¥) =a|z) +8 |y),

then for z = y we have a probability of observing |z) of ||a + 8||°, rather than
lle]* + |8]1* which it would have been in a probabilistic fashion. For example,
if @ = v/2/2 and B = —v/2/2 then the probability of observing |z) is 0 rather
than 1/2, and with the sign of 3 inverted we observe |z) with probability 1.

4.5 Quantum Parallelism and Realizations

The currently successful trick used in [Shor, 1994, Simon, 1994] is to use a se-
quence S, of n unitary operations S (similar to U above) on a register of n bits
originally in the all-0 state |¥) = |00...0). The result is a superposition of

Sa @)= > 1/V2 |z)

ze{0,1}"

of all the 2" possible states of the register, each with amplitude 1/1/2" (and
hence probability of being observed of 1/2™.) Now the computation proceeds in
parallel along the exponentially many computation paths in quantum coherent
superposition. A sequence of tricky further unitary operations and observations
serves to exploit interference (and so-called entanglement) phenomena to effect
a high probability of eventually observing a desired outcome.

Physical realizations of QCC will have to struggle with the fact that the
coherent states of the superposition will tend to deteriorate by interaction with
each other and the universe, a phenomenon called decoherence. In [Unruh, 1995]
it is calculated that that QCC calculations using physical realizations based on
spin lattices will have to be finished in an extremely short time. For example,
factoring a 1000 bit number in square quantum factoring time we have to perform
10° steps in less than the thermal time scale A/kT which at 1 K is of order 10~°
seconds. Such a QCC computation would need to proceed at optical frequencies.
See also [Chuang, et al., 1995].

Another problem is error correction: measurements to detect errors will de-
stroy the computation. A novel partial method for error correction has been sug-
gested in [Berthiaume et al., 1994]. A comprehensive discussion on these prob-
lems in practically applying QCC is contained in [Landauer, 1995].

126

References

[Adleman, 1994] L. Adleman, Molecular computation of solutions to combinatorial
problems, Science, Vol 266, Nov 1994, 1021-1024; A Vat of DNA May Bef:ome
Fast Computer Of the Future, Gina Kolata in: The New York Times, April 11,
1995, Science Times, pp. C1, C10.

[Barenco et. af] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVicenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, Elementary gates for quantum
computation, submitted to Physical Review A, March 1995.

[Benioff, 1980-1986] P. Benioff, J. Stat. Phys., 22(1980), 563-591, also J. Math. Phys.,
22(1981), 495-507, Int. J. Theoret. Phys., 21(1982), 177-201, Phys. Rev. Let-
ters, 48(1982), 1581-1585, J. Stat. Phys., 29(1982), 515-546, Phys. Rev. Letters,
53(1984), 1203, Ann. New York Acad. Sci., 480(1986), 475-486.

[Benioff, 1995] P. Benioff, Review of quantum computation, In: Trends in Statistical
Physics, Council of Scientific Information, Trivandrum, India, To be published.

[Bennett, 1973] C.H. Bennett. Logical reversibility of computation. IBM J. Res. De-
velop., 17:525-532, 1973.

[Bennett, 1982] C.H. Bennett. The thermodynamics of computation—a review. Int.
J. Theoret. Phys., 21(1982), 905-940.

[Bennett, 1989] C.H. Bennett. Time-space trade-offs for reversible computation.
SIAM J. Comput., 18(1989), T66-776.

[Bennett, et al., 1992] C.H.Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin,
Experimental quantum cryptography, J. Cryptology, 5:1(1992), 3-28; C.H. Bennett,
G. Brassard and A. Ekert, Quantum cryptography, Scientific American, Oct. 1992,
50-57.

[Bennett et al., 1993] C.H. Bennett, P. Gics, M. Li, PM.B. Vitanyi and W.H Zurek,
Thermodynamics of computation and information distance Proc. 25th ACM Symp.
Theory of Computation. ACM Press, 1993, 21-30.

[Bernstein and Vazirani, 1993] Bernstein, E. and U. Vazirani, “Quantum complexity
theory”, Proc. 25th ACM Symposium on Theory of Computing, 1993, pp. 11-20.

[Berthiaume et al., 1994] A. Berthiaume, D. Deutsch and R. Jozsa, The stabilisation
of quantum computations, Proc. 8rd IEEE Workshop on Physics and Computation
(PhysComp '94), IEEE Computer Society Press, 1994.

[Brassard, 1994] G. Brassard, Cryptology Column—Quantum computing: The end of
classical cryptography? SIGACT News, 25:4(Dec 1994), 15-21.

[Chuang, et al., 1995] I.L. Chuang, R. Laflamme, P. Shor, and W.H. Zurek, Quan-
tum computers, factoring and decoherence, Report LA-UR-95-241, Los Alamos
National Labs, 1995 (quant-ph/9503007).

[Deutsch, 1985-1992] D. Deutsch, Quantum theory, the Church-Turing principle and
the universal quantum computer. Proc. Royal Society London. Vol. A400(1985),
97-117; see also Proc. Royal Society London, A425(1989), 73-90; with R. Josza,
Proc. Royal Society London, A439(1992), 553-558.

[Feynman, 1982—1987] R.P. Feynman, Simulating physics with computers, Int. J.
Theoret. Physics, 21(1982), 467-488; Quantum mechanical computers. Founda-
tions of Physics, 16(1986), 507-531. (Originally published in Optics News, February
1985); Tiny Computers Obeying Quantum Mechanical Laws. In: New Directions
in Physics: The Los Alamos 40th Anniversary Volume,, N. Metropolis and D. M.
Kerr and G. Rota, Eds.,Academic Press,, Boston, 1987, 7-25.

[Fredkin & Toffoli, 1982] E. Fredkin and T. Toffoli. Conservative logic. Int. J. Theoret.
Phys., 21(1982),219-253.

127

[Kiehl, 1994] R.A. Kiehl, Research toward Nanoelectronic computing technologies in
Japan, In: Proc. 3rd Workshop on Physics and Computation (PhysComp’94), IEEE
Computer Society Press, 1994, 1-4.

[Kissin, 1982-1991] G. Kissin, Measuring Energy Consumption in VLSI Circuits: a
Foundation, Proc. 14th ACM Symp. Theor. Comp., 1982, 99-104; Lower and Upper
Bounds on the Switching Energy Consumed by VLSI Circuits, J. Assoc. Comp.
Mach.,, 38(1991), pp. 222-254.

[Kolmogorov, 1965] A.N. Kolmogorov, Three approaches to the definition of the con-
cept ‘quantity of information’, Problems in Information Transmission, 1:1(1965),
1-7.

[Koppelman, 1995] D.M. Koppelman, A lower bound on the average physical length of
edges in the physical realization of graphs, Manuscript Dept ECE, Lousiana State
Univ. Baton Rouge, 1995.

[Landauer, 1961] R. Landauer. Irreversibility and heat generation in the computing
process. IBM J. Res. Develop., 5:183-191, 1961.

[Landauer, 1991] R. Landauer, Information is physical, Physics Today, 44:May(1991),
23-29.

[Landauer, 1994] R. Landauer, Zig-zag path to understanding. In: Proc. 3nd Workshop
on Physics and Computation (PhysComp’94), IEEE Computer Society Press, 1994,
54-59.

[Landauer, 1995] R. Landauer, Is quantum mechanics useful? Proc. Roy. Soc. Lond.,
to be published.

[Lent et al., 1994] C.S. Lent, P.D. Tougaw, W. Porod, Quantum cellular automata:
The physics of computing with arrays of quantum dot molecules. In: Proc. 3nd
Workshop on Physics and Computation (PhysComp’94), IEEE Computer Society
Press, 1994, 5-13; also J. Appl. Phys., 74(1993), 3558, 4077, 6227, 75(1994), 1818.

[Li & Vitényi, 1993] M. Li and P.M.B. Vitanyi. An Introduction to Kolmogorov Com-
plezity and Its Applications. Springer-Verlag, New York, 1993.

[Li & Vitdnyi, 1994] M. Li and P.M.B. Vitdnyi. Irreversibility and Adiabatic Compu-
tation: Trading time for energy, submitted.

[Mead & Conway, 1980] C. Mead and L. Conway. Introduction to VLSI Systems.
Addison-Wesley, 1980.

[Proc. PhysComp, 1981, 1992, 1994] Proc. 1981 Physics and Computation Workshop.
Int. J. Theoret. Phys., 21(1982). Proc. 1992 Physics and Computation Workshop.
IEEE Computer Society Press, 1992. Proc. 1994 Physics and Computation Work-
shop. IEEE Computer Society Press, 1994.

[Schuhmacher, 1994] , B.W. Schumacher, On Quantum coding, Phys. Rev. A, in press
to appear in 1995; (with R. Josza), A new proof of the quantum noiseless coding
theorem, J. Modern Optics, 41(1994), 2343-2349.

[Shannon, 1948] C.E. Shannon, A mathematical theory of communication, Bell System
Tech. J., 27(1948), 379-423, 623-656.

[Shor, 1994] Shor, P., Algorithms for quantum computation: Discrete log and factor-
ing, Proc. 35th IEEE Symposium on Foundations of Computer Science, 1994, 124-
134.

[Simon, 1994] Simon, D., On the power of quantum computation, Proc. 35th IEEE
Symposium on Foundations of Computer Science, 1994.

[Thompson, 1979] C. Thompson, Area-time complexity for VLSI, Proc. 11th ACM
Symp. Theor. Comp., 1979, 81-88.

[Ullman, 1984] J. Ullman, Computational Aspects of VLSI, Computer Science Press,
Rockville, MD, 1984.

128

[Unruh, 1995] Unruh, W.G., Maintaining coherence in quantum computers, Physical
Review A, 51(1995), 992-.

[Upfal and Wigderson, 1987] E. Upfal and A. Wigderson, How to share memory on a
distributed system, J. Assoc. Comp. Mach., 34(1987), 116-127.

[Vitdnyi, 1985] Area penalty for sublinear signal propagation delay on chip, Proceed-
ings 26th IEEE Symposium on Foundations of Computer Science, 1985, 197-207.

[Vitanyi, 1986] P.M.B. Vitinyi, Non-sequential computation and Laws of Nature, In:
VLSI Algorithms and Architectures (Proceedings Aegean Workshop on Comput-
ing, 2nd International Workshop on Parallel Processing and VLSI), Lecture Notes
In Computer Science 227, Springer Verlag, 1986, 108-120.

[Vitanyi, 1988] P.M.B. Vitdnyi, Locality, communication and interconnect length in
multicomputers, SIAM J. Computing, 17 (1988), 659-672.

[Vitdnyi, 1994] P.M.B. Vitdnyi, Multiprocessor architectures and physical law. In:
Proc. 3rd Workshop on Physics and Computation (PhysComp’94), IEEE Com-
puter Society Press, 1994, 24-29.

[Burks, 1966] J. von Neumann. Theory of Self-Reproducing Automata. A.W. Burks,
Ed., Univ. lllinois Press, Urbana, 1966.

